Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.741
Filtrar
1.
Life Sci ; 345: 122610, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580194

RESUMO

Brain Organiods (BOs) are a promising technique for researching disease progression in the human brain. These organoids, which are produced from human induced pluripotent stem cells (HiPSCs), can construct themselves into structured frameworks. In the context of Parkinson's disease (PD), recent advancements have been made in the development of Midbrain organoids (MBOs) models that consider key pathophysiological mechanisms such as alpha-synuclein (α-Syn), Lewy bodies, dopamine loss, and microglia activation. However, there are limitations to the current use of BOs in disease modelling and drug discovery, such as the lack of vascularization, long-term differentiation, and absence of glial cells. To address these limitations, researchers have proposed the use of spinning bioreactors to improve oxygen and nutrient perfusion. Modelling PD utilising modern experimental in vitro models is a valuable tool for studying disease mechanisms and elucidating previously unknown features of PD. In this paper, we exclusively review the unique methods available for cultivating MBOs using a pumping system that mimics the circulatory system. This mechanism may aid in delivering the required amount of oxygen and nutrients to all areas of the organoids, preventing cell death, and allowing for long-term culture and using co-culturing techniques for developing glial cell in BOs. Furthermore, we emphasise some of the significant discoveries about the BOs and the potential challenges of using BOs will be discussed.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Organoides/metabolismo , Oxigênio/metabolismo , Neurônios Dopaminérgicos/metabolismo
2.
Medicine (Baltimore) ; 103(5): e37136, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306557

RESUMO

RATIONALE: Bilateral thalamic glioma is extremely rare and characterized by strictly limited involvement of bilateral thalami. To investigate its clinical and neuroimaging features, we herein reported a rare case of anaplastic astrocytoma (AA) involving both thalami and the brainstem and reviewed the literature. PATIENT CONCERNS: A-33-year-old Chinese woman was referred to our department owing to persistent headache and nausea and vomiting. Neurological examination showed mild cognitive impairment and positive Kernig sign. DIAGNOSIS: Brain magnetic resonance imaging (MRI) demonstrated asymmetrical and swollen lesions involving both thalami, midbrain and pontine tegmentum, without restricted diffusion or enhancement. On day 7 after admission, she was transferred to the department of neurosurgery and underwent a stereotactic brain biopsy of the right thalamic lesion. Histopathological features and immunohistochemistry were consistent with AA, IDH wild-type, World Health Organization grade III. INTERVENTIONS: She was administrated with mannitol and glycerin fructose for decreasing intracranial pressure. OUTCOMES: In spite of receiving chemotherapy, she died on 2-month after her initial diagnosis. LESSONS: AA involving in both thalami and brainstem is a rare entity with poor prognosis. The clinicians and radiologists should deepen their awareness of the specific MRI feature of bilateral thalamic involvement. When MRI alone is insufficient, the utility of stereotactic biopsy is essential for making a definitive diagnosis.


Assuntos
Astrocitoma , Neoplasias do Tronco Encefálico , Glioma , Humanos , Feminino , Astrocitoma/patologia , Glioma/patologia , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mesencéfalo/patologia
3.
Mol Cell Neurosci ; 128: 103919, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307302

RESUMO

Parkinson's disease (PD) is a complex, progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain. Despite extensive research efforts, the molecular and cellular changes that precede neurodegeneration in PD are poorly understood. To address this, here we describe the use of patient specific human midbrain organoids harboring the SNCA triplication to investigate mechanisms underlying dopaminergic degeneration. Our midbrain organoid model recapitulates key pathological hallmarks of PD, including the aggregation of α-synuclein and the progressive loss of dopaminergic neurons. We found that these pathological hallmarks are associated with an increase in senescence associated cellular phenotypes in astrocytes including nuclear lamina defects, the presence of senescence associated heterochromatin foci, and the upregulation of cell cycle arrest genes. These results suggest a role of pathological α-synuclein in inducing astrosenescence which may, in turn, increase the vulnerability of dopaminergic neurons to degeneration.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Astrócitos/metabolismo , Doenças Neurodegenerativas/metabolismo , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Organoides/metabolismo , Organoides/patologia , Substância Negra/metabolismo
4.
Mol Neurodegener ; 19(1): 7, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245794

RESUMO

Parkinson's Disease (PD) is the second most common neurodegenerative disorder. The pathological hallmark of PD is loss of dopaminergic neurons and the presence of aggregated α-synuclein, primarily in the substantia nigra pars compacta (SNpc) of the midbrain. However, the molecular mechanisms that underlie the pathology in different cell types is not currently understood. Here, we present a single nucleus transcriptome analysis of human post-mortem SNpc obtained from 15 sporadic Parkinson's Disease (PD) cases and 14 Controls. Our dataset comprises ∼84K nuclei, representing all major cell types of the brain, allowing us to obtain a transcriptome-level characterization of these cell types. Importantly, we identify multiple subpopulations for each cell type and describe specific gene sets that provide insights into the differing roles of these subpopulations. Our findings reveal a significant decrease in neuronal cells in PD samples, accompanied by an increase in glial cells and T cells. Subpopulation analyses demonstrate a significant depletion of tyrosine hydroxylase (TH) enriched astrocyte, microglia and oligodendrocyte populations in PD samples, as well as TH enriched neurons, which are also depleted. Moreover, marker gene analysis of the depleted subpopulations identified 28 overlapping genes, including those associated with dopamine metabolism (e.g., ALDH1A1, SLC6A3 & SLC18A2). Overall, our study provides a valuable resource for understanding the molecular mechanisms involved in dopaminergic neuron degeneration and glial responses in PD, highlighting the existence of novel subpopulations and cell type-specific gene sets.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Mesencéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Substância Negra/patologia
5.
Clin Neurol Neurosurg ; 236: 108089, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141551

RESUMO

BACKGROUND AND AIM: Brainstem descending modulatory circuits have been postulated to be involved in migraine. Differences in brainstem volume between migraineurs and healthy controls have been demonstrated in previous research, nevertheless, the effect of migraine aura on brainstem volume is still uncertain. The aim of this study was to investigate the brainstem volume in migraineurs and examine the effect of migraine aura on brainstem volume. METHODS: Our study included 90 female migraine patients without white matter lesions. (29 migraine patients with aura (MwA) and 61 migraine patients without aura (MwoA) and 32 age-matched female healthy controls (HC). Using the FreeSurfer image analysis suite, the volumes of the entire brainstem and its subfields (medulla, pons, and midbrain) were measured and compared between migraine subgroups (MwA vs. MwoA) and the healthy control group. The possible effects of migraine characteristics (i.e., disease duration and migraine attack frequency) on brainstem volume were also investigated. RESULTS: Migraineurs had greater medulla volume (MwoA 3552 ± 459 mm3, MwA 3424 ± 448 mm3) than healthy controls (3236 ± 411 mm3). Statistically, MwA vs. HC p = 0.040, MwoA vs. HC p = 0.002, MwA vs. MwoA p = 0.555. A significant positive correlation was found between disease duration and the volume of medulla in the whole migraine group (r = 0.334, p = 0.001). Neither the whole brainstem nor its subfields were significantly different in volume between migraine subgroups. CONCLUSION: Brainstem volume changes in migraine are mainly localized to the medulla and not specific to the presence of aura.


Assuntos
Epilepsia , Enxaqueca com Aura , Enxaqueca sem Aura , Humanos , Feminino , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/patologia , Enxaqueca com Aura/diagnóstico por imagem , Enxaqueca sem Aura/diagnóstico por imagem , Mesencéfalo/patologia , Imageamento por Ressonância Magnética/métodos
6.
Parkinsonism Relat Disord ; 116: 105866, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804622

RESUMO

INTRODUCTION: Many studies of the Richardson's syndrome phenotype of progressive supranuclear palsy (PSP) have elucidated regions of progressive atrophy and neural correlates of clinical severity. However, the neural correlates of survival and how these differ according to variant phenotypes are poorly understood. We set out to identify structural changes that predict severity and survival from scanning date to death. METHODS: Structural magnetic resonance imaging data from 112 deceased people with clinically defined 'probable' or 'possible' PSP were analysed. Neuroanatomical regions of interest volumes, thickness and area were correlated with 'temporal stage', defined as the ratio of time from symptom onset to death, time from scan to death ('survival from scan'), and in a subset of patients, clinical severity, adjusting for age and total intracranial volume. Forty-nine participants had post mortem confirmation of the diagnosis. RESULTS: Using T1-weighted magnetic resonance imaging, we confirmed the midbrain, and bilateral cortical structural correlates of contemporary disease severity. Atrophy of the striatum, cerebellum and frontotemporal cortex correlate with temporal stage and survival from scan, even after adjusting for severity. Subcortical structure-survival relationships were stronger in Richardson's syndrome than variant phenotypes. CONCLUSIONS: Although the duration of PSP varies widely between people, an individual's progress from disease onset to death (their temporal stage) reflects atrophy in striatal, cerebellar and frontotemporal cortical regions. Our findings suggest magnetic resonance imaging may contribute to prognostication and stratification of patients with heterogenous clinical trajectories and clarify the processes that confer mortality risk in PSP.


Assuntos
Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico , Imageamento por Ressonância Magnética/métodos , Mesencéfalo/patologia , Cerebelo/patologia , Atrofia/patologia
7.
J Neurol Sci ; 454: 120821, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832378

RESUMO

OBJECTIVE: Midbrain atrophy is considered specific to progressive supranuclear palsy (PSP) compared with Parkinson's disease (PD). We aimed to determine how often midbrain atrophy is observed in pathologically diagnosed Lewy body disease (LBD) and clinically diagnosed PD and the robustness of midbrain atrophy assessed by the One-Line Method previously developed for the diagnosis of PSP. METHODS: We studied two separate cohorts with MRI: the first pathologically diagnosed cohort consisted of patients with LBD (n = 13), PSP (n = 6), multiple system atrophy (MSA, n = 7), and corticobasal degeneration (CBD, n = 2); the second cohort consisted of patients with PD (n = 122). Midbrain length was measured using the One-Line Method and FreeSurfer estimated volumes of the subcortical nuclei. RESULTS: The area under the curve of midbrain length differentiating PSP from LBD, MSA, and CBD in a pathologically diagnosed cohort was 0.91. Midbrain length with cut-off values of 10.5 mm and 9.5 mm had a sensitivity of 100% and 67% and a specificity of 68% and 96%, respectively. In the first cohort, 7.7% and 23.0% of patients with LBD showed midbrain lengths <9.5 mm and 10.5 mm, respectively, and in the second cohort, 4.9% and 19.7% showed midbrain lengths <9.5 mm and 10.5 mm, respectively. INTERPRETATION: Midbrain length measured using the One-Line Method is helpful in the diagnosis of PSP. Some cases of pathologically diagnosed LBD and clinically diagnosed PD present with midbrain atrophy.


Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Paralisia Supranuclear Progressiva , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/diagnóstico por imagem , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/patologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/patologia , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Imageamento por Ressonância Magnética/métodos , Diagnóstico Diferencial , Atrofia/patologia
8.
Mov Disord ; 38(10): 1891-1900, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37545102

RESUMO

BACKGROUND: Brain magnetic resonance imaging (MRI) is used to support the diagnosis of progressive supranuclear palsy (PSP). However, the value of visual descriptive, manual planimetric, automatic volumetric MRI markers and fully automatic categorization is unclear, particularly regarding PSP predominance types other than Richardson's syndrome (RS). OBJECTIVES: To compare different visual reading strategies and automatic classification of T1-weighted MRI for detection of PSP in a typical clinical cohort including PSP-RS and (non-RS) variant PSP (vPSP) patients. METHODS: Forty-one patients (21 RS, 20 vPSP) and 46 healthy controls were included. Three readers using three strategies performed MRI analysis: exclusively visual reading using descriptive signs (hummingbird, morning-glory, Mickey-Mouse), visual reading supported by manual planimetry measures, and visual reading supported by automatic volumetry. Fully automatic classification was performed using a pre-trained support vector machine (SVM) on the results of atlas-based volumetry. RESULTS: All tested methods achieved higher specificity than sensitivity. Limited sensitivity was driven to large extent by false negative vPSP cases. Support by automatic volumetry resulted in the highest accuracy (75.1% ± 3.5%) among the visual strategies, but performed not better than the midbrain area (75.9%), the best single planimetric measure. Automatic classification by SVM clearly outperformed all other methods (accuracy, 87.4%), representing the only method to provide clinically useful sensitivity also in vPSP (70.0%). CONCLUSIONS: Fully automatic classification of volumetric MRI measures using machine learning methods outperforms visual MRI analysis without and with planimetry or volumetry support, particularly regarding diagnosis of vPSP, suggesting the use in settings with a broad phenotypic PSP spectrum. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo , Paralisia Supranuclear Progressiva , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Mesencéfalo/patologia , Paralisia Supranuclear Progressiva/patologia
9.
Nature ; 619(7970): 606-615, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438521

RESUMO

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neurônios Dopaminérgicos , Sobrevivência de Enxerto , Doenças Neuroinflamatórias , Doença de Parkinson , Linfócitos T Reguladores , Tirosina 3-Mono-Oxigenase , Humanos , Dopamina/análogos & derivados , Dopamina/metabolismo , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Mesencéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/terapia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Tirosina 3-Mono-Oxigenase/deficiência , Tirosina 3-Mono-Oxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Animais , Camundongos , Ratos , Oxidopamina/metabolismo , Sobrevivência de Enxerto/imunologia , Morte Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Neostriado/metabolismo , Fatores de Tempo , Proliferação de Células , Resultado do Tratamento
10.
Artigo em Inglês | MEDLINE | ID: mdl-37297653

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease and the most common example of dementia. The neuropathological features of AD are the abnormal deposition of extracellular amyloid-ß (Aß) and intraneuronal neurofibrillary tangles with hyperphosphorylated tau protein. It is recognized that AD starts in the frontal cerebral cortex, and then it progresses to the entorhinal cortex, the hippocampus, and the rest of the brain. However, some studies on animals suggest that AD could also progress in the reverse order starting from the midbrain and then spreading to the frontal cortex. Spirochetes are neurotrophic: From a peripheral route of infection, they can reach the brain via the midbrain. Their direct and indirect effect via the interaction of their virulence factors and the microglia potentially leads to the host peripheral nerve, the midbrain (especially the locus coeruleus), and cortical damage. On this basis, this review aims to discuss the hypothesis of the ability of Treponema denticola to damage the peripheral axons in the periodontal ligament, to evade the complemental pathway and microglial immune response, to determine the cytoskeletal impairment and therefore causing the axonal transport disruption, an altered mitochondrial migration and the consequent neuronal apoptosis. Further insights about the central neurodegeneration mechanism and Treponema denticola's resistance to the immune response when aggregated in biofilm and its quorum sensing are suggested as a pathogenetic model for the advanced stages of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Treponema denticola , Doença de Alzheimer/etiologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia
11.
Cells ; 12(9)2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37174736

RESUMO

Chlordecone (CLD) is an organochlorine pesticide (OCP) that is currently banned but still contaminates ecosystems in the French Caribbean. Because OCPs are known to increase the risk of Parkinson's disease (PD), we tested whether chronic low-level intoxication with CLD could reproduce certain key characteristics of Parkinsonism-like neurodegeneration. For that, we used culture systems of mouse midbrain dopamine (DA) neurons and glial cells, together with the nematode C. elegans as an in vivo model organism. We established that CLD kills cultured DA neurons in a concentration- and time-dependent manner while exerting no direct proinflammatory effects on glial cells. DA cell loss was not impacted by the degree of maturation of the culture. The use of fluorogenic probes revealed that CLD neurotoxicity was the consequence of oxidative stress-mediated insults and mitochondrial disturbances. In C. elegans worms, CLD exposure caused a progressive loss of DA neurons associated with locomotor deficits secondary to alterations in food perception. L-DOPA, a molecule used for PD treatment, corrected these deficits. Cholinergic and serotoninergic neuronal cells were also affected by CLD in C. elegans, although to a lesser extent than DA neurons. Noticeably, CLD also promoted the phosphorylation of the aggregation-prone protein tau (but not of α-synuclein) both in midbrain cell cultures and in a transgenic C. elegans strain expressing a human form of tau in neurons. In summary, our data suggest that CLD is more likely to promote atypical forms of Parkinsonism characterized by tau pathology than classical synucleinopathy-associated PD.


Assuntos
Clordecona , Doença de Parkinson , Transtornos Parkinsonianos , Praguicidas , Animais , Humanos , Camundongos , Caenorhabditis elegans/metabolismo , Clordecona/metabolismo , Praguicidas/toxicidade , Ecossistema , Transtornos Parkinsonianos/patologia , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/patologia
12.
Theranostics ; 13(8): 2673-2692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215566

RESUMO

Rationale: Parkinson's disease (PD) is a prevalent neurodegenerative disorder that is characterized by degeneration of dopaminergic neurons (DA) at the substantia nigra pas compacta (SNpc). Cell therapy has been proposed as a potential treatment option for PD, with the aim of replenishing the lost DA neurons and restoring motor function. Fetal ventral mesencephalon tissues (fVM) and stem cell-derived DA precursors cultured in 2-dimentional (2-D) culture conditions have shown promising therapeutic outcomes in animal models and clinical trials. Recently, human induced pluripotent stem cells (hiPSC)-derived human midbrain organoids (hMOs) cultured in 3-dimentional (3-D) culture conditions have emerged as a novel source of graft that combines the strengths of fVM tissues and 2-D DA cells. Methods: 3-D hMOs were induced from three distinct hiPSC lines. hMOs at various stages of differentiation were transplanted as tissue pieces into the striatum of naïve immunodeficient mouse brains, with the aim of identifying the most suitable stage of hMOs for cellular therapy. The hMOs at Day 15 were determined to be the most appropriate stage and were transplanted into a PD mouse model to assess cell survival, differentiation, and axonal innervation in vivo. Behavioral tests were conducted to evaluate functional restoration following hMO treatment and to compare the therapeutic effects between 2-D and 3-D cultures. Rabies virus were introduced to identify the host presynaptic input onto the transplanted cells. Results: hMOs showed a relatively homogeneous cell composition, mostly consisting of dopaminergic cells of midbrain lineage. Analysis conducted 12 weeks post-transplantation of day 15 hMOs revealed that 14.11% of the engrafted cells expressed TH+ and over 90% of these cells were co-labeled with GIRK2+, indicating the survival and maturation of A9 mDA neurons in the striatum of PD mice. Transplantation of hMOs led to a reversal of motor function and establishment of bidirectional connections with natural brain target regions, without any incidence of tumor formation or graft overgrowth. Conclusion: The findings of this study highlight the potential of hMOs as safe and efficacious donor graft sources for cell therapy to treat PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/terapia , Doença de Parkinson/patologia , Mesencéfalo/patologia , Encéfalo/patologia , Neurônios Dopaminérgicos/fisiologia , Diferenciação Celular/fisiologia
13.
Zhonghua Yi Xue Za Zhi ; 103(21): 1623-1630, 2023 Jun 06.
Artigo em Chinês | MEDLINE | ID: mdl-37248062

RESUMO

Objective: To investigate the abnormal changes of static functional connectivity (sFC) and dynamic functional connectivity (dFC) in the dopaminergic midbrain (ventral dorsal tegmental area and bilateral substantia nigra compacta, VTA/SNc) in patients with first-episode schizophrenia(SCH), and their correlation with the Positive and Negative Symptom Scale (PANSS). Methods: The data of 198 first-episode untreated schizophrenia patients and 199 healthy controls (HC) matched by age, sex and years of education who were admitted to the First Affiliated Hospital of Zhengzhou University from January 2019 to May 2022 were prospectively collected. All subjects underwent high resolution structural MRI and resting state functional magnetic resonance imaging (rs-fMRI) scanning. The dopaminergic midbrain (VTA/SNc) was defined as three regions of interest (ROI). The sFC and dFC analyses with VTA/SNc as seeds were performed to produce a whole-brain diagram initially, which subsequently were compared between schizophrenia group and HC group. Finally, the correlation analysis of sFC and dFC values with the PANSS scores were performed, including the positive scale score, negative scale score, general psychopathology scale score, total score and symptom scores. Results: There were 86 males and 112 females in SCH group, and aged (23±9) years. Meanwhile, there were 95 males and 104 females in HC group, and aged (22±5) years. In the SCH group, the positive (P), the negative (N) and the general psychopathology (G) scale scores and the total score (T) of the PANSS scale was 20±7, 21±7, 41±11 and 82±22, respectively. Compared with the HC group, the VTA showed decreased sFC with four clusters including cerebellar vermis 7/9, left putamen, right thalamus and left middle cingulate gyrus in the schizophrenia group (peak center, t=-4.35, -4.81, -4.35 and -4.65; voxel P<0.005; cluster P<0.05), the right SNc showed decreased sFC with four clusters including left cerebellar hemisphere 4/5/8, right putamen, right medial orbitofrontal gyrus and the left putamen in the schizophrenia group (peak center, t=-4.91, -5.15, -4.77 and -5.21; voxel P<0.005; cluster P<0.05), and the left SNc showed decreased sFC with four clusters including the left putamen, right putamen, right medial orbitofrontal gyrus and left middle cingulate gyrus in the schizophrenia group (peak center, t=-5.82, -4.83 and -4.65; voxel P<0.005; cluster P<0.05). Compared with the HC group, the VTA showed decreased dFC with the right inferior parietal gyrus, right angular gyrus and right superior parietal gyrus in schizophrenia group (t=-4.17). In the schizophrenia group, the sFC value of cluster 2 (left putamen) with VTA as seed and cluster 4 (left putamen) with right SNc as seed were positively correlated with the positive scale scores in PANSS (r=0.141, 0.169, both P<0.05). The sFC and dFC values of significant regions were also correlated with hallucination, delusion, suspicion, hostility, communication disorder, passivity/indifference, lack of communication, stereotyped thinking, depression, non-cooperation, lack of judgment and insight, impulse control disorder, active social avoidance (all P<0.05). Conclusion: The static and dynamic functional connectivity (stability) of VTA/SNc to cerebellum, thalamus, striatum, prefrontal lobe and cingulate gyrus in first-episode schizophrenia patients were decreased, which were closely related to the positive and negative symptoms of schizophrenia.


Assuntos
Esquizofrenia , Feminino , Humanos , Masculino , Encéfalo/patologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Mesencéfalo/patologia , Córtex Pré-Frontal/patologia , Adolescente , Adulto Jovem , Adulto
14.
Comput Biol Med ; 158: 106801, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36989741

RESUMO

Parkinson's disease (PD) is characterized by dopaminergic neurons degeneration in the substantia nigra pars compacta. Increasing evidence indicates that peripheral CD4+ T cells, a vital pathological component of PD, have been implicated in systemic inflammation activation, blood-brain barrier (BBB) dysfunction, central nervous system infiltration, and consequent neurons degeneration. However, there is no consensus on CD4+ T cell types' exact phenotypic characteristics in systemic inflammation and the mechanism of CD4+ T cells traffic into the BBB in patients with PD. In this study, we employed single-cell RNA sequencing (scRNA-seq) to elucidate the potential mechanism of T cells on the breakdown of BBB. The PD-associated Cytotoxic CD4+ T cells (CD4+ CTLs) were characterized by a significant increase in proportion as well as enhancement of interferon-gamma (IFNG) response and cell adhesion. Meanwhile, TBX21, IRF1 and NFATC2, identified as the key transcription factors in effector CD4+ T cells differentiation, induced overexpression of target genes-IFNG in CD4+ CTLs. Interestingly, endothelial cells (ECs) in PD patients were discovered to be more responsive to IFNG than other cell types of midbrain. Furthermore, the cell-cell communication analysis between CD4+ T cells and midbrain cells identified IFNG/IFNGR1 and SPP1/ITGB1 as the ligand-receptor pairs to mediate CD4+ CTLs' infiltration into the central nervous system (CNS) through the weakened ECs' tight junction. Together, these results suggested that PD-specific peripheral CD4+ CTLs might influence BBB function by migrating to mesencephalic endothelial cells (ECs) and activating the IFNG response in ECs.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Interferon gama/metabolismo , Transcriptoma/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Inflamação , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia
15.
BMC Neurol ; 23(1): 127, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991344

RESUMO

BACKGROUND: Hypertrophic olivary degeneration (HOD), a rare form of transsynaptic degeneration, is secondary to dentato-rubro-olivary pathway injuries in some cases. We describe a unique case of an HOD patient who presented with palatal myoclonus secondary to Wernekinck commissure syndrome caused by a rare bilateral "heart-shaped" infarct lesion in the midbrain. CASE PRESENTATION: A 49-year-old man presented with progressive gait instability in the past 7 months. The patient had a history of posterior circulation ischemic stroke presenting with diplopia, slurred speech, and difficulty in swallowing and walking 3 years prior to admission. The symptoms improved after treatment. The feeling of imbalance appeared and was aggravated gradually in the past 7 months. Neurological examination demonstrated dysarthria, horizontal nystagmus, bilateral cerebellar ataxia, and 2-3 Hz rhythmic contractions of the soft palate and upper larynx. Magnetic resonance imaging (MRI) of the brain performed 3 years prior to this admission showed an acute midline lesion in the midbrain exhibiting a remarkable "heart appearance" on diffusion weighted imaging. MRI after this admission revealed T2 and FLAIR hyperintensity with hypertrophy of the bilateral inferior olivary nucleus. We considered a diagnosis of HOD resulting from a midbrain heart-shaped infarction, which caused Wernekinck commissure syndrome 3 years prior to admission and later HOD. Adamantanamine and B vitamins were administered for neurotrophic treatment. Rehabilitation training was also performed. One year later, the symptoms of this patient were neither improved nor aggravated. CONCLUSION: This case report suggests that patients with a history of midbrain injury, especially Wernekinck commissure injury, should be alert to the possibility of delayed bilateral HOD when new symptoms occur or original symptoms are aggravated.


Assuntos
Ataxia Cerebelar , Mioclonia , Masculino , Humanos , Pessoa de Meia-Idade , Mioclonia/complicações , Núcleo Olivar/patologia , Mesencéfalo/patologia , Hipertrofia/patologia , Imageamento por Ressonância Magnética/métodos , Síndrome
16.
Clin Neurol Neurosurg ; 227: 107643, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863221

RESUMO

Intracranial germinomas are most commonly extra-axial germ cell tumors that are predominantly found in the pineal and suprasellar regions. Primary intra-axial midbrain germinomas are extremely rare, with only eight reported cases. Here we present a 30-year-old man who presented with severe neurological deficits, with an MRI that showed a heterogeneously enhancing mass with ill-defined margins in the midbrain, and with surrounding vasogenic edema extending to the thalamus. The presumptive preoperative differential diagnosis included glial tumors and lymphoma. The patient underwent a right paramedian suboccipital craniotomy and biopsy obtained through the supracerebellar infratentorial transcollicular approach. The histopathological diagnosis was reported as pure germinoma. After patient discharge, he received chemotherapy with carboplatin and etoposide, followed by radiotherapy. Follow-up MRI at up to 26 months showed no contrast-enhancing lesions but a mild T2 FLAIR hyperintensity adjacent to the resection cavity. Differential diagnosis of midbrain lesions can be challenging and should include glial tumors, primary central nervous system lymphoma, germ cell tumors, and metastasis. Accurate diagnosis requires adequate tissue sampling. In this report, we present a very rare case of a primary intra-axial germinoma of the midbrain which is biopsied via a transcollicular approach. This report is also unique as it provides the first surgical video of an open biopsy and the microscopic appearance of an intra-axial primary midbrain germinoma via a transcollicular approach.


Assuntos
Neoplasias Encefálicas , Germinoma , Glioma , Neoplasias Embrionárias de Células Germinativas , Glândula Pineal , Masculino , Humanos , Adulto , Germinoma/diagnóstico por imagem , Germinoma/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Embrionárias de Células Germinativas/patologia , Glândula Pineal/patologia , Glioma/patologia , Mesencéfalo/patologia
17.
Cells ; 12(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36831291

RESUMO

Progressive accumulation of α-Synuclein (αSyn) in Lewy bodies (LBs) and loss of dopaminergic (DA) neurons are the hallmark pathological features of Parkinson's disease (PD). Although currently available in vitro and in vivo models have provided crucial information about PD pathogenesis, the mechanistic link between the progressive accumulation of αSyn into LBs and the loss of DA neurons is still unclear. To address this, it is critical to model LB formation and DA neuron loss, the two key neuropathological aspects of PD, in a relevant in vitro system. In this study, we developed a human midbrain-like organoid (hMBO) model of PD. We demonstrated that hMBOs generated from induced pluripotent stem cells (hiPSCs), derived from a familial PD (fPD) patient carrying αSyn gene (SNCA) triplication accumulate pathological αSyn over time. These cytoplasmic inclusions spatially and morphologically resembled diverse stages of LB formation and were composed of key markers of LBs. Importantly, the progressive accumulation of pathological αSyn was paralleled by the loss of DA neurons and elevated apoptosis. The model developed in this study will complement the existing in vitro models of PD and will provide a unique platform to study the spatiotemporal events governing LB formation and their relation with neurodegeneration. Furthermore, this model will also be beneficial for in vitro screening and the development of therapeutic compounds.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Corpos de Lewy , Neurônios Dopaminérgicos/patologia , Mesencéfalo/patologia , Corpos de Inclusão
18.
Gut ; 72(1): 73-89, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34836918

RESUMO

OBJECTIVE: Idiopathic Parkinson's disease (PD) is characterised by alpha-synuclein (aSyn) aggregation and death of dopaminergic neurons in the midbrain. Recent evidence posits that PD may initiate in the gut by microbes or their toxins that promote chronic gut inflammation that will ultimately impact the brain. In this work, we sought to demonstrate that the effects of the microbial toxin ß-N-methylamino-L-alanine (BMAA) in the gut may trigger some PD cases, which is especially worrying as this toxin is present in certain foods but not routinely monitored by public health authorities. DESIGN: To test the hypothesis, we treated wild-type mice, primary neuronal cultures, cell lines and isolated mitochondria with BMAA, and analysed its impact on gut microbiota composition, barrier permeability, inflammation and aSyn aggregation as well as in brain inflammation, dopaminergic neuronal loss and motor behaviour. To further examine the key role of mitochondria, we also determined the specific effects of BMAA on mitochondrial function and on inflammasome activation. RESULTS: BMAA induced extensive depletion of segmented filamentous bacteria (SFB) that regulate gut immunity, thus triggering gut dysbiosis, immune cell migration, increased intestinal inflammation, loss of barrier integrity and caudo-rostral progression of aSyn. Additionally, BMAA induced in vitro and in vivo mitochondrial dysfunction with cardiolipin exposure and consequent activation of neuronal innate immunity. These events primed neuroinflammation, dopaminergic neuronal loss and motor deficits. CONCLUSION: Taken together, our results demonstrate that chronic exposure to dietary BMAA can trigger a chain of events that recapitulate the evolution of the PD pathology from the gut to the brain, which is consistent with 'gut-first' PD.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Doença de Parkinson/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo
19.
World Neurosurg ; 169: 51, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334709

RESUMO

Brainstem cavernous malformations (BSCMs) are rare and challenging neurosurgical lesions that demand a sophisticated and nuanced strategy for resection. A key element of surgical planning for BSCM resection is brainstem safe entry zones, a set of neuroanatomically defined locations where a pial resection can be executed with minimal risk to the adjacent central nervous system tracts and nuclei.1-5 Quadrigeminal BSCMs are particularly unusual and can be accessed via the supra-, inter-, or infracollicular safe entry zones.2,4,5 We report a unique demonstration of the supracollicular safe entry zone for the resection of a symptomatic hemorrhagic quadrigeminal plate BSCM. A man in his early 60s presented with transient hearing loss and visual dysfunction. A right quadrigeminal midbrain cavernous malformation was identified on magnetic resonance imaging. Surgical resection was performed with the patient in the sitting position. A bipedicular suboccipital flap, torcular craniotomy, and midline supracerebellar infratentorial approach were used. The lesion itself was accessed via the supracollicular safe entry zone, where pial hemosiderin staining was also encountered, using a linear transverse incision just above the right superior colliculus. Gross total resection was achieved, and the patient recovered from surgery with no new neurologic deficits (Video 1).


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Procedimentos Neurocirúrgicos , Masculino , Humanos , Procedimentos Neurocirúrgicos/métodos , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/cirurgia , Mesencéfalo/patologia , Tronco Encefálico/cirurgia , Craniotomia/métodos
20.
Arch Argent Pediatr ; 120(5): e210-e212, 2022 10.
Artigo em Espanhol | MEDLINE | ID: mdl-36190222

RESUMO

Ewing's sarcoma is a malignant neoplasm mainly occurring in the bone, with other locations being exceptional. In the case of primary intracranial presentations, it is essential to rule out metastatic lesions as well as other neuroectodermal tumors that may require different diagnostic and therapeutic approaches. We present a 14-year-old patient who consulted for upper eyelid ptosis of left eye associated with a 2-month history of diplopia, with imaging evidence of extra-axial tumor lesion, located at the level of the interpeduncular cistern. Complete excision was performed, with a pathological diagnosis of Ewing's sarcoma of midbrain location.


El sarcoma de Ewing es una neoplasia de origen más frecuentemente óseo; otras localizaciones son excepcionales. En el caso de las presentaciones primarias intracraneales, resulta imprescindible descartar que se trate de un secundarismo así como también de otros tumores neuroectodérmicos que puedan requerir distintos abordajes diagnósticos y terapéuticos. Se presenta a una paciente de 14 años que consultó por ptosis palpebral de ojo izquierdo asociado a diplopía de 2 meses de evolución; los estudios por imágenes mostraron una lesión tumoral extraaxial situada a nivel de la cisterna interpeduncular. Se realizó la exéresis completa, con diagnóstico anatomopatológico de sarcoma de Ewing de ubicación mesencefálica.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Adolescente , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Humanos , Mesencéfalo/patologia , Sarcoma de Ewing/diagnóstico , Sarcoma de Ewing/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...